headerphoto

What Is Climate Change?

Climate change is any long-term significant change in the “average weather” that a given region experiences. Average weather may include average temperature, precipitation and wind patterns. It involves changes in the variability or average state of the atmosphere over durations ranging from decades to millions of years. These changes can be caused by dynamic processes on Earth, external forces including variations in sunlight intensity, and more recently by human activities.

In recent usage, especially in the context of environmental policy, the term "climate change" often refers to changes in modern climate (see global warming). For information on temperature measurements over various periods, and the data sources available, see temperature record. For attribution of climate change over the past century, see attribution of recent climate change.

Climate Change Factors

Climate changes reflect variations within the Earth's atmosphere, processes in other parts of the Earth such as oceans and ice caps, and the effects of human activity. The external factors that can shape climate are often called climate forcings and include such processes as variations in solar radiation, the Earth's orbit, and greenhouse gas concentrations.

Variations Within the Earth's Climate

Weather is the day-to-day state of the atmosphere, and is a chaotic non-linear dynamical system. On the other hand, climate — the average state of weather — is fairly stable and predictable. Climate includes the average temperature, amount of precipitation, days of sunlight, and other variables that might be measured at any given site. However, there are also changes within the Earth's environment that can affect the climate.

Glaciation

Glaciers are recognized as being among the most sensitive indicators of climate change, advancing substantially during climate cooling (e.g., the Little Ice Age) and retreating during climate warming on moderate time scales. Glaciers grow and collapse, both contributing to natural variability and greatly amplifying externally forced changes. For the last century, however, glaciers have been unable to regenerate enough ice during the winters to make up for the ice lost during the summer months.

The most significant climate processes of the last several million years are the glacial and interglacial cycles of the present ice age. Though shaped by orbital variations, the internal responses involving continental ice sheets and 130 m sea-level change certainly played a key role in deciding what climate response would be observed in most regions. Other changes, including Heinrich events, Dansgaard–Oeschger events and the Younger Dryas show the potential for glacial variations to influence climate even in the absence of specific orbital changes.

Ocean Variability

A schematic of modern thermohaline circulation On the scale of decades, climate changes can also result from interaction of the atmosphere and oceans. Many climate fluctuations — including not only the El Niño Southern oscillation (the best known) but also the Pacific decadal oscillation, the North Atlantic oscillation, and the Arctic oscillation — owe their existence at least in part to different ways that heat can be stored in the oceans and move between different reservoirs. On longer time scales ocean processes such as thermohaline circulation play a key role in redistributing heat, and can dramatically affect climate.

The Memory of Climate

More generally, most forms of internal variability in the climate system can be recognized as a form of hysteresis, meaning that the current state of climate reflects not only the inputs, but also the history of how it got there. For example, a decade of dry conditions may cause lakes to shrink, plains to dry up and deserts to expand. In turn, these conditions may lead to less rainfall in the following years. In short, climate change can be a self-perpetuating process because different aspects of the environment respond at different rates and in different ways to the fluctuations that inevitably occur.

 

Click Here! Click Here! Click Here!

 


Links