Evidence of Climatic Change

Evidence for climatic change is taken from a variety of sources that can be used to reconstruct past climates. Most of the evidence is indirect—climatic changes are inferred from changes in indicators that reflect climate, such as vegetation, dendrochronology, ice cores, sea level change, and glacial retreat.

Pollen Analysis

Palynology is the science that studies contemporary and fossil palynomorphs, including pollen. Palynology is used to infer the geographical distribution of plant species, which vary under different climate conditions. Different groups of plants have pollen with distinctive shapes and surface textures, and since the outer surface of pollen is composed of a very resilient material, they resist decay. Changes in the type of pollen found in different sedimentation levels in lakes, bogs or river deltas indicate changes in plant communities; which are dependent on climate conditions.


Remains of beetles are common in freshwater and land sediments. Different species of beetles tend to be found under different climatic conditions. Knowledge of the present climatic range of the different species, and of the age of the sediments in which remains are found, allows past climatic conditions to be inferred.

Glacial Geology

Advancing glaciers leave behind moraines and other features that often have datable material in them, recording the time when a glacier advanced and deposited a feature. Similarly, by tephrochronological techniques, the lack of glacier cover can be identified by the presence of datable soil or volcanic tephra horizons. Glaciers are considered one of the most sensitive climate indicators by the IPCC, and their recent observed variations provide a global signal of climate change. See Retreat of glaciers since 1850.

Examples of Climate Change

Climate change has continued throughout the entire history of Earth. The field of paleoclimatology has provided information of climate change in the ancient past, supplementing modern observations of climate.

1. Climate of the deep past

* Faint young sun paradox

* Snowball earth

* Oxygen Catastrophe

2. Climate of the last 500 million years

* Phanerozoic overview

* Paleocene–Eocene Thermal Maximum

* Cretaceous Thermal Maximum

* Permo–Carboniferous Glaciation

* Ice ages

3. Climate of recent glaciations

* Dansgaard–Oeschger event

* Younger Dryas

* Ice age temperatures

4. Recent climate

* Holocene Climatic Optimum

* Medieval Warm Period

* Little Ice Age

* Year Without a Summer

* Temperature record of the past 1000 years

* Global warming

* Hardiness Zone Migration

Climate Change and Biodiversity

The life cycles of many wild plants and animals are closely linked to the passing of the seasons; climatic changes can lead to interdependent pairs of species (e.g. a wild flower and its pollinating insect) losing synchronization, if, for example, one has a cycle dependent on day length and the other on temperature or precipitation. In principle, at least, this could lead to extinctions or changes in the distribution and abundance of species. One phenomenon is the movement of species northwards in Europe. A recent study by Butterfly Conservation in the UK, has shown that relatively common species with a southerly distribution have moved north, whilst scarce upland species have become rarer and lost territory towards the south. This picture has been mirrored across several invertebrate groups. Drier summers could lead to more periods of drought, potentially affecting many species of animal and plant. For example, in the UK during the drought year of 2006 significant numbers of trees died or showed dieback on light sandy soils. In Australia, since the early 90s, tens of thousands of flying foxes (Pteropus) have died as a direct result of extreme heat. Wetter, milder winters might affect temperate mammals or insects by preventing them hibernating or entering torpor during periods when food is scarce. One predicted change is the ascendancy of 'weedy' or opportunistic species at the expense of scarcer species with narrower or more specialized ecological requirements. One example could be the expanses of bluebell seen in many woodlands in the UK. These have an early growing and flowering season before competing weeds can develop and the tree canopy closes. Milder winters can allow weeds to overwinter as adult plants or germinate sooner, whilst trees leaf earlier, reducing the length of the window for bluebells to complete their life cycle. Organisations such as Wildlife Trust, World Wide Fund for Nature, Birdlife International and the Audubon Society are actively monitoring and research the effects of climate change on biodiversity and advance policies in areas such as landscape scale conservation to promote adaptation to climate change.


Click Here! Click Here! Click Here!