headerphoto

Human Influences on Climate Change

Anthropogenic factors are human activities that change the environment and influence climate. In some cases the chain of causality is direct and unambiguous (e.g., by the effects of irrigation on temperature and humidity), while in others it is less clear. Various hypotheses for human-induced climate change have been debated for many years, though it is important to note that the scientific debate has moved on from scepticism, as there is scientific consensus on climate change that human activity is beyond reasonable doubt as the main explanation for the current rapid changes in the world's climate. Consequently in politics, the debate has largely shifted onto ways to reduce human impact and adapt to change that is already 'in the system.'

The biggest factor of present concern is the increase in CO2 levels due to emissions from fossil fuel combustion, followed by aerosols (particulate matter in the atmosphere), which exert a cooling effect, and cement manufacture. Other factors, including land use, ozone depletion, animal agriculture and deforestation, also affect climate.

Fossil Fuels

Carbon dioxide variations over the last 400,000 years, showing a rise since the industrial revolution. It is known that carbon dioxide levels are substantially higher now than at any time in the last 750,000 years. Beginning with the industrial revolution in the 1880s and accelerating ever since, the human consumption of fossil fuels has elevated CO2 levels from a concentration of ~280 ppm to ~387 ppm today. The concentrations are increasing at a rate of 2-3 ppm/year. If current rates of emission continue, these ever increasing concentrations are projected to reach a range of 535 to 983 ppm by the end of the 21st century. Along with rising methane levels, these changes are anticipated to cause an increase of 1.4–5.6 °C between 1990 and 2100 (see global warming). In the interest of averting drastic climate change, some scientists and international coalitions have set goals to limit concentrations to 450 or 500 ppm.

Aerosols

Anthropogenic aerosols, particularly sulphate aerosols from fossil fuel combustion, exert a cooling influence. This, together with natural variability, is believed to account for the relative "plateau" in the graph of 20th-century temperatures in the middle of the century.

Cement Manufacture

Cement manufacture contributes CO2 when calcium carbonate is heated, producing lime and carbon dioxide, and also as a result of burning fossil fuels. The cement industry produces 5% of global man-made CO2 emissions, of which 50% is from the chemical process, and 40% from burning fuel. The amount of CO2 emitted by the cement industry is nearly 900 kg of CO2 for every 1000 kg of cement produced.

Land Use

Prior to widespread fossil fuel use, humanity's largest effect on local climate is likely to have resulted from land use. Irrigation, deforestation, and agriculture fundamentally change the environment. For example, they change the amount of water going into and out of a given location. They also may change the local albedo by influencing the ground cover and altering the amount of sunlight that is absorbed. For example, there is evidence to suggest that the climate of Greece and other Mediterranean countries was permanently changed by widespread deforestation between 700 BC and 1 AD (the wood being used for shipbuilding, construction and fuel), with the result that the modern climate in the region is significantly hotter and drier, and the species of trees that were used for shipbuilding in the ancient world can no longer be found in the area. An assessment of conterminous U.S. biomass burning speculated that the approximate 8 fold reduction in Wildland Fire Emissions (aerosols) from the preindustrial era to present caused by land use changes and land management decisions may have had a regional warming affect if not for fossil fuel burning emission increases occurring concurrently.

A controversial hypothesis by William Ruddiman called the early anthropocene hypothesis suggests that the rise of agriculture and the accompanying deforestation led to the increases in carbon dioxide and methane during the period 5000–8000 years ago. These increases, which reversed previous declines, may have been responsible for delaying the onset of the next glacial period, according to Ruddimann's overdue-glaciation hypothesis.

In modern times, a 2007 Jet Propulsion Laboratory study found that the average temperature of California has risen about 2 degrees over the past 50 years, with a much higher increase in urban areas. The change was attributed mostly to extensive human development of the landscape.

Livestock

According to a 2006 United Nations report, Livestock's Long Shadow, livestock is responsible for 18% of the world’s greenhouse gas emissions as measured in CO2 equivalents. This however includes land usage change, meaning deforestation in order to create grazing land, as well as livestock natural gas emissions. In the Amazon Rainforest, 70% of deforestation is to make way for grazing land, so this is the major factor in the 2006 UN FAO report, which was the first agricultural report to include land usage change into the radiative forcing of livestock. In addition to CO2 emissions, livestock produces 65% of human-induced nitrous oxide (which has 296 times the global warming potential of CO2) and 37% of human-induced methane (which has 23 times the global warming potential of CO2).

Interplay of Factors

If a certain forcing (for example, solar variation) acts to change the climate, then there may be mechanisms that act to amplify or reduce the effects. These are called positive and negative feedbacks. As far as is known, the climate system is generally stable with respect to these feedbacks: positive feedbacks do not "run away". Part of the reason for this is the existence of a powerful negative feedback between temperature and emitted radiation: radiation increases as the fourth power of absolute temperature.

However, a number of important positive feedbacks do exist. The glacial and interglacial cycles of the present ice age provide an important example. It is believed that orbital variations provide the timing for the growth and retreat of ice sheets. However, the ice sheets themselves reflect sunlight back into space and hence promote cooling and their own growth, known as the ice-albedo feedback. Further, falling sea levels and expanding ice decrease plant growth and indirectly lead to declines in carbon dioxide and methane. This leads to further cooling. Conversely, rising temperatures caused, for example, by anthropogenic emissions of greenhouse gases could lead to decreased snow and ice cover, revealing darker ground underneath, and consequently result in more absorption of sunlight.

Water vapor, methane, and carbon dioxide can also act as significant positive feedbacks, their levels rising in response to a warming trend, thereby accelerating that trend. Water vapor acts strictly as a feedback (excepting small amounts in the stratosphere), unlike the other major greenhouse gases, which can also act as forcings.

More complex feedbacks include heat movement from the equatorial regions to the northern latitudes and involve the possibility of altered water currents with in the oceans or air currents with in the atmosphere. A significant concern is that melting glacial ice from Greenland may interfere and change the thermohaline circulation of water in the North Atlantic, affecting the Gulf Stream which brings warmer water to replace sinking colder water; which would change the distribution of heat to Europe and the east coast of the United States.

Other potential feedbacks are not well understood and may either inhibit or promote warming. For example, it is unclear whether rising temperatures promote or inhibit vegetative growth, which could in turn draw down either more or less carbon dioxide. Similarly, increasing temperatures may lead to either more or less cloud cover. Since on balance cloud cover has a strong cooling effect, any change to the abundance of clouds also affects climate.

Monitoring the Current Status of Climate

Testing for spatial dependence between independently measured values in an ordered set is based on applying Fisher’s F-test to the variance of a set and the first variance term of the ordered set. Charting statistically significant variance terms gives a sampling variogram that shows where spatial dependence in our sample space of time dissipates into randomness. The lag of a sampling variogram is a statistically robust measure for a change in a climate statistic.

Scientists use "Indicator time series" that represent the many aspects of climate and ecosystem status. The time history provides a historical context. Current status of the climate is also monitored with climate indices.

Evidence for Climatic Change

Evidence for climatic change is taken from a variety of sources that can be used to reconstruct past climates. Most of the evidence is indirect—climatic changes are inferred from changes in indicators that reflect climate, such as vegetation, dendrochronology, ice cores, sea level change, and glacial retreat.

Pollen Analysis

Palynology is the science that studies contemporary and fossil palynomorphs, including pollen. Palynology is used to infer the geographical distribution of plant species, which vary under different climate conditions. Different groups of plants have pollen with distinctive shapes and surface textures, and since the outer surface of pollen is composed of a very resilient material, they resist decay. Changes in the type of pollen found in different sedimentation levels in lakes, bogs or river deltas indicate changes in plant communities; which are dependent on climate conditions.

Beetles

Remains of beetles are common in freshwater and land sediments. Different species of beetles tend to be found under different climatic conditions. Knowledge of the present climatic range of the different species, and of the age of the sediments in which remains are found, allows past climatic conditions to be inferred.

Glacial Geology

Advancing glaciers leave behind moraines and other features that often have datable material in them, recording the time when a glacier advanced and deposited a feature. Similarly, by tephrochronological techniques, the lack of glacier cover can be identified by the presence of datable soil or volcanic tephra horizons. Glaciers are considered one of the most sensitive climate indicators by the IPCC, and their recent observed variations provide a global signal of climate change. See Retreat of glaciers since 1850.

 

Click Here! Click Here! Click Here!

 


Links